16
2021-10
​数控车床上完美搞定梯形螺纹加工
  本文通过对梯形螺纹加工的工艺分析和加工方法的研讨,探索出一套可以在数控车床上加工出合格梯形螺纹的方法。在普通车床的生产实习过程中,加工梯形螺纹课题是最基本的实习课题,但在数控车床实习过程中,常常由于加工工艺方面的原因,却很少进行梯形螺纹的加工练习,甚至有人提出在数控车床上不能加工梯形螺纹,显然这种提法是错误的。其实,只要工艺分析合理,使用的加工指令得当,完全可以在数控车床上加工出合格的梯形螺纹。 一、梯形螺纹加工的工艺分析1.梯形螺纹的尺寸计算梯形螺纹的代号梯形螺纹的代号用字母“Tr”及公称直径×螺距表示,单位均为mm。左旋螺纹需在尺寸规格之后加注“LH”,右旋则不用标注。例如Tr36×6,Tr44×8LH等。国标规定,公制梯形螺纹的牙型角为30°。2.梯形螺纹在数控车床上的加工方法直进法螺纹车刀X向间歇进给至牙深处(如图2a)。采用此种方法加工梯形螺纹时,螺纹车刀的三面都参加切削,导致加工排屑困难,切削力和切削热增加,刀尖磨损严重。当进刀量过大时,还可能产生“扎刀”和“爆刀”现象。这种方法数控车床可采用指令G92来实现,但是很显然,这种方法是不可取的。【金属加工微信,内容不错,值得关注】斜进法螺纹车刀沿牙型角方向斜向间歇进给至牙深处(如图2b)。采用此种方法加工梯形螺纹时,螺纹车刀始终只有一个侧刃参加切削,从而使排屑比较顺利,刀尖的受力和受热情况有所改善,在车削中不易引起“扎刀”现象。该方法在数控车床上可采用G76指令来实现。交错切削法螺纹车刀沿牙型角方向交错间隙进给至牙深(如图2c)。该方法类同于斜进法,也可在数控车床上采用G76指令来实现。切槽刀粗切槽法该方法先用切槽刀粗切出螺纹槽((如图2d),再用梯形螺纹车刀加工螺纹两侧面。这种方法的编程与加工在数控车床上较难实现。3.梯形螺纹测量梯形螺纹的测量分综合测量、三针测量、和单针测量三种。综合测量用螺纹规测量,中径的三针测量与单针测量如图3所示,计算如下:M=d2+4.864dD-1.866P(dD表示测量用量针的直径,P表示螺距。)A=(M+d0)/2(此处d0表示工件实际测量外径)  二、梯形螺纹编程实例计算梯形螺纹尺寸并查表确定其公差大径d=360–0.375;中径d2=d-0.5P=36-3=33,查表确定其公差,故d2=33–0.118–0.453牙高h3=0.5P+ac=3.5;小径d3=d-2h3=29,查表确定其公差,故d3=290–0.537;牙顶宽f=0.366P=2.196牙底宽W=0.366P-0.536ac=2.196-0.268=1.928用3.1mm的测量棒测量中径,则其测量尺寸M=d2+4.864dD-1.866P=32.88,根据中径公差确定其公差,则M=32.88–0.118–0.4532.编写数控程序O0308;G98;T0202;M03S400;G00X37.0Z3.0;G76P020530Q50R0.08;(设定精加工两次,精加工余量为0.16mm,倒角量等于0.5倍螺距,牙型角为30°,最小切深为0.05mm。)G76X28.75Z-40.0P3500Q600F6.0;(设定螺纹高为3.5mm,第一刀切深为0.6mm。)G00X150.0M05;M30以上程序在螺纹切削过程中采用沿牙型角方向斜向进刀的方式,如图2b所示。在FANUC-0i系统中,有时还可采用如图2c所示交错螺纹切削方式,G76编程如下所示:G76X28.75Z-40.0K3500D600F6.0A30.0P2;K:螺纹牙型高度。D:第一次进给的背吃刀量。A:牙型角度。P2:采用交错螺纹切削3.计算Z向刀具偏置值在梯形螺纹的实际加工中,由于刀尖宽度并不等于槽底宽,因此通过一次G76循环切削无法正确控制螺纹中径等各项尺寸。为此可采用刀具Z向偏置后再次进行G76循环加工来解决以上问题,为了提高加工效率,最好只进行一次偏置加工,因此必须精确计算Z向的偏置量,Z向偏置量的计算方法如图5所示,计算如下:设M实测-M理论=2AO1=δ,则AO1=δ/2AO2=AO1×tan(∠AO1O2)=tan15°×δ/2Z向偏置量EF=2AO2=δ×tan15°=0.268δ 实际加工时,在一次循环结束后,用三针测量实测M值,计算出刀具Z向偏置量,然后在刀长补偿或磨耗存贮器中设置Z向刀偏量,再次用G76循环加工就能一次性精确控制中径等螺纹参数值。【金属加工微信,内容不错,值得关注】 三、结论通过以上的实例分析我们可以得出结论,要想在数控机床上方便地加工出梯形螺纹,关键是做好如下几点:1.合理选择梯形螺纹的加工指令,通常选G76指令。2.准确设定G76指令的参数值,这些值通常通过对梯形螺纹的分析计算获得。3.根据初步测量得出的中径值,精确计算出Z向刀具偏置值,从而准确控制梯形螺纹的中径值。金属加工微信由创刊于1950年的《金属加工》杂志(包括冷加工和热加工两个半月刊)和金属加工在线(mw1950.com)共同运营。汇聚了新闻、技术、产品、市场等内容。金属加工通过杂志、数字媒体、活动与服务四位一体,为行业提供一流的信息服务和推广服务。
15
2021-10
​数控机床加工常见的8种故障及解决方案都在这里
金属切削刀具通过数控机床切除工件上多余的金属,从而使工件成型。数控机床、工具系统和刀具管理是发挥数控机床加工效率、保证加工质量的基础。所以数控机床在加工中的常见故障和解决方法与刀具有着直接的关系。以下是数控加工过程中经常遇到的一些故障,解决的方法也有很多种,所以如果没有足够的经验直接找到问题切入点,也可以使用“排除法”进行比较。这些故障和检测方法是经过加工测试,为大家在工作时遇到问题作为参考依据。                1、工件尺寸准确,表面光洁度差故障原因刀具刀尖受损,不锋利;机床产生共振,放置不平稳;机床有爬行现象;加工工艺不好。解决方案:刀具磨损或受损后不锋利,则重新磨刀或选择更好的刀具重新对刀;机床产生共振或放置不平稳,调整水平,打下基础,固定平稳;机械产生爬行的原因为拖板导轨磨损厉害,丝杠滚珠磨损或松动,机床应注意保养,上下班之后应清扫铁丝,并及时加润滑油,以减少摩擦;选择适合工件加工的冷却液,在能达到其他工序加工要求的情况下,尽量选用较高的主轴转速。2、工件产生锥度大小头现象故障原因机床放置的水平没调整好,一高一低,产生放置不平稳;车削长轴时,贡献材料比较硬,刀具吃刀比较深,造成让刀现象;尾座顶针与主轴不同心。解决方案:使用水平仪调整机床的水平度,打下扎实的地基,把机床固定好提高其韧性;选择合理的工艺和适当的切削进给量避免刀具受力让刀;调整尾座。3、驱动器相位灯正常,而加工出来的工件尺寸时大时小故障原因机床拖板长期高速运行,导致丝杆和轴承磨损;刀架的重复定位精度在长期使用中产生偏差;拖板每次都能准确回到加工起点,但加工工件尺寸仍然变化,此种现象一般由主轴引起,主轴的高速转动使轴承磨损严重,导致加工尺寸变化。解决方案:用百分表靠在刀架底部,同时通过系统编辑一个固定循环程序,检查拖板的重复定位精度,调整丝杆间隙,更换轴承;用百分表检查刀架的重复定位精度,调整机械或更换刀架;用百分表检测加工工件后是否准确回到程序起点,若可以,则检修主轴,更换轴承。4、工件尺寸与实际尺寸相差几毫米,或某一轴向有很大变化故障原因快速定位的速度太快,驱动和电机反应不过来;在长期摩擦损耗后机械的拖板丝杆和轴承过紧卡死;刀架换刀后太松,锁不紧;编辑的程序错误,头、尾没有呼应或没取消刀补就结束了;系统的电子齿轮比或步距角设置错误。解决方案:快速定位速度太快,则适当调整GO的速度,切削加减速度和时间使驱动器和电机在额定的运行频率下正常工作;在出现机床磨损后产生拖板、丝杆鹤轴承过紧卡死,则必须重新调整修复;刀架换刀后太松则检查刀架反转时间是否满足,检查刀架内部的涡轮蜗杆是否磨损,间隙是否太大,安装是否过松等;如果是程序原因造成的,则必须修改程序,按照工件图纸要求改进,选择合理的加工工艺,按照说明书的指令要求编写正确的程序;若发现尺寸偏差太大则检查系统参数是否设置合理,特别是电子齿轮和步距角等参数是否被破坏,出现此现象可通过打百分表来测量。5、加工圆弧效果不理想,尺寸不到位故障原因振动频率的重叠导致共振;参数设置不合理,进给速度过大,使圆弧加工失步;丝杆间隙大引起的松动或丝杆过紧引起的失步,同步带磨损。解决方案:找出产生共振的部件,改变其频率,避免共振;考虑工件材料的加工工艺,合理编制程序;对于步进电机,加工速率F不可设置过大;机床是否安装牢固,放置平稳,拖板是否磨损后过紧,间隙增大或刀架松动等;更换同步带。6、批量生产中,偶尔出现工件超差故障原因必须认真检查工装夹具,且考虑到操作者的操作方法,及装夹的可靠性,由于装夹引起的尺寸变化,必须改善工装使工人尽量避免人为疏忽作出误判现象;数控系统可能受到外界电源的波动或受到干扰后自动产生干扰脉冲,传给驱动致使驱动接受多余的脉冲驱动电机夺走或少走现象。解决方案:了解掌握其规律,尽量采用一些抗干扰的措施,如:强电场干扰的强电电缆与弱电信号的信号线隔离,加入抗干扰的吸收电容和采用屏蔽线隔离,另外,检查地线是否连接牢固,接地触点最近,采取一切抗干扰措施避免系统受干扰。7、工件某一道工序加工有变化,其它各道工序尺寸准确故障原因该程序段程序的参数是否合理,是否在预定的轨迹内,编程格式是否符合说明书要求。解决方案:螺纹程序段时出现乱牙,螺距不对,则马上联想到加工螺纹的外围配置(编码器)和该功能的客观因素。8、工件的每道工序都有递增或递减的现象故障原因程序编写错误;系统参数设置不合理;配置设置不当;机械传动部件有规律周期性的变化故障。解决方案:检查程序使用的指令是否按说明书规定的要求轨迹执行,可以通过打百分表来判断,把百分表定位在程序的起点让程序结束后拖板是否回到起点位置,再重复执行即便观察其结果,掌握其规律;检查系统参数是否设置合理或被认为改动;有关的机床配置在连接计算耦合参数上单计算是否符合要求,脉冲当量是否准确;检查机床传动部分有没有损坏,齿轮耦合是否均匀,检查是否存在周期性,规律性故障现象,若有则检查其关键部分并给予排除。
14
2021-10
​多头螺纹数控车床加工步骤和方法,超实用!
在现代工业生产中,利用数控车床加工螺纹,能大大提高生产效率、保证螺纹加工精度,减轻操作工人的劳动强度。但在高职院校的数控车床实习培训教学中普遍存在如下现象:部分教师和绝大多数学生对螺纹加工感到棘手,特别是加工多头螺纹,更加无所适从。下面通过螺纹零件的实际加工分析,阐述多头螺纹的加工步骤和方法。 一、螺纹的基本特性 在机械制造中,螺纹联接被广泛应用,例如数控车床的主轴与卡盘的联结,方刀架上螺钉对刀具的坚固,丝杠螺母的传动等。它是在圆柱或圆锥表面上沿着螺旋线所形成的具有规定牙型的连续凸起和沟槽,有外螺纹和内螺纹两种。按照螺纹剖面形状的不同,主要有三角螺纹、梯形螺纹、锯齿螺纹和矩形螺纹四种。按照螺纹的线数不同,又可分为单线螺纹和多线螺纹。在各种机械中,螺纹零件的作用主要有以下几点:一是用于连接、紧固;二是用于传递动力,改变运动形式。三角螺纹常用于连接、坚固;梯形螺纹和矩形螺纹常用于传递动力,改变运动形式。由于用途不同,它们的技术要求和加工方法也不一样。 二、加工方法 螺纹的加工,随着科学技术的发展,除采用普通机床加工外,常采用数控机床加工。这样既能减轻加工螺纹的加工难度又能提高工作效率,并且能保证螺纹加工质量。数控机床加工螺纹常用G32、G92和G76三条指令。其中指令G32用于加工单行程螺纹,编程任务重,程序复杂;而采用指令G92,可以实现简单螺纹切削循环,使程序编辑大为简化,但要求工件坯料事先必须经过粗加工。指令G76,克服了指令G92的缺点,可以将工件从坯料到成品螺纹一次性加工完成。且程序简捷,可节省编程时间。 在普通车床上进行多头螺纹车削一直是一个加工难点:当第一条螺纹车成之后,需要手动进给小刀架并用百分表校正,使刀尖沿轴向精确移动一个螺距再加工第二条螺纹;或者打开挂轮箱,调整齿轮啮合相位,再依次加工其余各头螺纹。受普通车床丝杠螺距误差、挂轮箱传动误差、小拖板移动误差等多方面的影响,多头螺纹的导程和螺距难以达到很高的精度。而且,在整个加工过程中,不可避免地存在刀具磨损甚至打刀等问题,一旦换刀,新刀必须精确定位在未完成的那条螺纹线上。这一切都要求操作者具备丰富的经验和高超的技能。然而,在批量生产中,单靠操作者的个人经验和技能是不能保证生产效率和产品质量的。在制造业现代化的今天,高精度数控机床和高性能数控系统的应用使许多普通机床和传统工艺难以控制的精度变得容易实现,而且生产效率和产品质量也得到了很大程度的保证。 三、实例分析 现以FANUC系统的GSK980T车床,加工螺纹M30×3/2-5g6g为例,说明多头螺纹的数控加工过程:工件要求:螺纹长度为25mm,两头倒角为2×45°、牙表面粗糙度为Ra3.2的螺纹。采用的材料是为45#圆钢坯料。1.准备工作。通过对加工零件的分析,利用车工手册查找M30×3/2-5g6g的各项基本参数:该工件是导程为3mm纹且螺距为1.5(该参数是查表的重要依据)的双线螺;大径为30,公差带为6g,查得其尺寸上偏差为-0.032、下偏差为-0.268、公差有0.236,公差要求较松;中径为29.026,公差带为5g,查得其尺寸上偏差为-0.032、下偏差为-0.150,公差为0.118,公差要求较紧;小径按照大径减去车削深度确定。螺纹的总背吃刀量ap与螺距的关系近经验公式ap≈0.65P,每次的背吃刀量按照初精加工及材料来确定。大径是车削螺纹毛坏外圆的编程依据,中径是螺纹尺寸检测的标准和调试螺纹程序的依据,小径是编制螺纹加工程序的依据。两边留有一定尺寸的车刀退刀槽。 2、正确选择加工刀具。螺纹车刀的种类、材质较多,选择时要根据被加工材料的种类合理选用,材料的牌号要根据不同的加工阶段来确定。对于45#圆钢材质,宜选用YT15硬质合金车刀,该刀具材料既适合于粗加工也适合于精加工,通用性较强,对数控车床加工螺纹而言是比较适合的。另外,还需要考虑螺纹的形状误差与磨制的螺纹车刀的角度、对称度。车削45钢螺纹,刃倾角为10°,主后角为6°,副后角为4°,刀尖角为59°16’,左右刃为直线,而刀尖圆弧半径则由公式R=0.144P确定(其中P为螺距),刀尖圆角半径很小在磨制时要特别细心。 四、多头螺纹加工方法及程序设计 多头螺纹的编程方法和单头螺纹相似,采用改变切削螺纹初始位置或初始角来实现。假定毛坯已经按要求加工,螺纹车刀为T0303,采用如下两种方法来进行编程加工。 1.用G92指令来加工圆柱型多头螺纹。G92指令是简单螺纹切削循环指令,我们可以利用先加工一个单线螺纹,然后根据多头螺纹的结构特性,在Z轴方向上移过一个螺距,从而实现多头螺纹的加工。程序编辑如图。(工件原点设在右端面中心) 2.用G33指令来加工圆柱型多头螺纹。用G33指令来编程时,除了考虑螺纹导程(F值)外,还要考虑螺纹的头数(P值)来说明螺纹轴向的分度角。式中:X、Z——绝对尺寸编程的螺纹终点坐标(采用直径编程)。U、W——增量尺寸编程的螺纹终点坐标(采用直径编程)
13
2021-10
​数控车床上螺纹加工的三大问题和解决方法
在螺纹车削过程中,经常会因螺纹刀具磨损,崩刀而需重新装刀对刀,装刀对刀的好坏直接影响车削螺纹的精度,特别是螺纹的修复车削,需二次装夹二次对刀,制约了数控车床加工螺纹的加工效率,螺纹精度要求较高时,如梯形螺纹还需两侧面进行精加工,需先粗加工后换精车刀进行精加工,如果不能很好地解决加工过程中的装刀对刀问题,数控车削螺纹将不能得到很好的应用。 螺纹在数控车床中加工的原理 数控车削螺纹与普通车床车螺纹有着很大的区别,普通车床是通过齿轮机械传递与丝杠联动后车削,即主轴每转一转,刀架移动一个螺纹的导程,在整个螺纹加工过程中这条传动链不能断开,否则会乱扣。而数控车削是通过主轴上安装的编码器发出脉冲信号进入数控系统,有数控系统进行运算控制,发出指令控制伺服电机通过滚珠丝杠控制刀具进行移动,实现螺纹的车削,为了让螺纹车削在多走刀时不乱扣,通过检测脉冲信号来控制螺纹的起始加工位置,当程序加工开始时,主轴旋转,刀具等待主轴编码器发出同步信号(零位信号)后,进行车削运动,那么车削第二刀螺纹时,刀具回到上次车削的起始点位置,还是等待接收到同步信号(零位信号)后再次车削,这样车削螺纹始终在同一螺旋线上,所以不会产生乱扣现象。 螺纹车削装刀对刀中存在的问题 (1)首次车削装夹刀具在首次装夹螺纹刀时会产生螺纹刀刀尖与工件回转中心不等高现象,一般常见于焊接刀,由于制造粗糙,刀杆尺寸不精确,中心高需加垫片进行调整,中心高低影响刀具车削后的实际几何角度。装刀时刀尖角装偏,易产生螺纹牙型角误差,产生齿形歪斜。螺纹刀伸出过长,加工时会产生震刀,影响螺纹表面粗糙度。 (2)粗精车刀对刀在加工高精度螺纹及梯形螺纹过程中,需用两把螺纹刀粗精车分开,两把刀对刀产生偏移大(特别是Z向)会使螺纹中径变大产生报废。 (3)修复工件对刀修复工件对刀由于二次装夹工件,修复的螺旋线与编码器一转信号发生了变化,再次修复加工时会产生乱扣。 解决问题的方法 (1)螺纹刀刀尖必须与工件回转中心保持等高,刀具刃磨后用对刀样板靠在工件轴线上进行对刀,保持刀尖角安装正确。如使用数控机夹刀具,由于刀杆制造精度高,一般只要把刀杆靠紧刀架的侧边即可。 (2)粗精加工螺纹刀对刀采用设定某一点为基准点,采用通常方法对刀即可,在实际的对刀过程中采用试切法只要稍加调整一下刀补。 (3)在螺纹加工中,如出现刀具磨损或者崩刀的现象,需重新刃磨刀具后对刀,工件未取下修复,只需把螺纹刀安装的位置与拆下前位置重合在一起,这等同于同一把车刀加工。 (4)如修复已拆下的工件,这时确定加工起点位置才能进行修复加工工作,如何确定加工起点与一转信号位置,首先可用试验棒进行表面深为0.05~0.1mm的螺纹车削(所有参数与需加工螺纹参数相同),Z值为距螺纹起点右端面整数螺纹导程距离值,表面刻出螺旋线,确定螺纹车削起点,并在卡盘圆表面相应位置刻线标记(即使刻线和试验棒上螺旋起点同一轴向剖面内)。目的是使信号位置被记录下来,卸下试验棒,装夹上要车削或修复的螺纹工件,对刀时先将刀具转到加工位置,再将车刀移至卡盘刻线部位,转动卡盘,使刻线对准车刀主切削刃,然后主轴不转动,移动刀尖至任意一个完整螺纹槽内,记下对应Z向绝对坐标,最后计算车刀Z向定位起点坐标,根据计算结果修改程序中起点Z向坐标。公式为z′=z+(n+2)t,n为当前刀具所在螺纹槽到螺纹起点的螺纹槽的个数,t为螺距。 例:设当前z值为-10,n为2,t为3,则z′=z+(n+2)t=2新加工起点Z向为2。 车削螺纹过程中装刀和对刀至关重要,特别是二次车削(修复)螺纹,要在已有螺纹沟槽基础上进行螺纹车削,其关键就是要实现加工时保证主轴零位信号位置与工件上已有螺纹螺旋线的起点相一致。
12
2021-10
数控机床CNC装置的工作过程
​  CNC数控装置在硬件支持下,由软件完成其控制过程。下面从输入、译码处理、数据处理、插补运算、位置控制、输入/输出处理、显示和诊断八个环节来说明CNC装置的工作过程。1输入  输入到CNC装置的有零件程序、控制参数和补偿数据等。常用的输入方式有键盘手动输入(MDI)、存储卡输入、磁盘输入、串行通信接口RS-232输入、连接上一级计算机的DNC输入以及网络通信方式输入。2译码处理  译码处理程序将零件加工程序以程序段(Block)为单位进行处理。每个程序段由若干代码组成。计算机通过译码程序识别这些代码,按一定的规则翻译成CNC装置能够识别的数据形式(如事先约定的二进制形式)并存放在制定的存储器(译码结果缓冲器)内。3数据处理  数据处理程序的任务就是将经过预处理后存放在制定的存储区的数据进行处理。数据处理一般包括刀具位置补偿、刀具长度补偿、刀具半径补偿、刀尖圆弧半径补偿、进给速度处理及辅助功能处理。4插补运算  插补运算和位置控制是CNC系统的实时控制,一般在相应的中断服务程序中进行。5位置控制  位置控制的任务是在每个采样周期内,将插补计算得到的理论位置与工作台实际反馈位置相比较,根据其差值控制进给电动机,带动工作台或刀具移动,加工出所要求的零件。6输入/输出处理  输入/输出处理主要处理CNC装置操作面板的开关信号、机床电气信号的输入/输出控制(如换刀、换挡、冷却等)。CNC装置与机床强电之间必须通过光电隔离电路进行隔离,确保CNC装置不受强电信号的影响。7显示  CNC装置的显示主要是为操作者提供方便。显示内容包括零件程序显示、参数显示、机床状态显示、加工轨迹的动态显示、报警诊断显示等。8诊断  CNC装置利用内部自诊断程序进行故障诊断,主要包括启动诊断和在线诊断。
09
2021-10
​数控车床上怎么加工蜗杆?
在蜗轮的传动中,蜗杆是主要的动件,现阶段的矿山机械和工程机械中蜗杆的应用非常广泛。数控车床应用到实际生产中后,蜗杆的生产效率不仅得到了提高,而且加工的精度也得到了保障。在数控车床上加工蜗杆存在一定的难度,需要对加工的深度以及切削刀的程度进行准确的掌握,避免在加工过程中可能出现的扎刀现象。 加工蜗杆工艺的分析 设计工艺的内容 主要加工内容为右旋轴向直廊蜗杆,在对工件进行编程的过程中不需要设置退尾量。蜗杆的右侧是起刀点的位置,在加工蜗杆过程中,编程的起点一般设置在工件右端面。工件材料一般选择为45钢;刀具材料一般选择为高速钢或硬质合金;设置蜗杆的全齿为6.6mm,利用G92命令实现左右切削法,以应对背吃刀量较大的情况,从而使加工的可靠性得到保证;在装夹工件的过程中,一般优先选择一夹一顶或者双顶夹尖的方式进行装夹;对于齿根圆直径的误差需要控制在0.2mm以内,而Z轴换刀的误差需要控制在左右赶刀量内,具体为0.1mm,必须满足工件的公差要求。 在设计工艺时,主程序需要从起刀点位置进行,另外加工蜗杆的过程中还需要其他子程序的调用,整个过程的完整性才能得到保证。一般在粗车完成之后再进行精车,车床转速选为10RPM,加工过程中需要对轴向齿厚精度和齿侧表面粗糙度进行确定。左右切削法粗车完成之后,可以在两边齿侧距离刀刃之间看到赶刀刃的间隙。精车起刀点的确定,可以根据对刀的误差进行一定程度的调整,避免空走刀现象的出现。在精加工主程序定位之后,严格按照相关图样的要求,对蜗杆的左侧面进行加工。如果主程序需要进行二次定位,要保证蜗杆齿厚度和右侧面粗糙度的要求。另外,添加切削液可在一定程度上提高切削加工效率,改善齿面加工质量。 相关参数的计算 变换转速时螺距误差需要进行测量,结合工件表面的划痕进行测量,通常情况需要把测量的误差控制在0.05mm的范围内;起刀点同样需要进行计算,主要根据升速段和减速段的距离、转程、导程进行计算。一般情况下,升速段和减速段最小值的计算公式为:L1=Nl/400;L2=Nl/1800。在计算过程中,转速的改变会引起升速段和减速段值的改变。起刀点的X值由齿顶圆直径加上全齿高的两倍再加上退刀量所得。除此之外,还需要对粗车起刀点和精车起刀点的具体位置进行确定。 轴向直廊蜗杆部分的几何尺寸及加工中的参数说明,对齿顶圆直径、倒角等指标进行了设定,满足了蜗杆的加工条件。 使用正确的加工方法 直进法,利用直进法加工蜗杆属于三刃切削,这种方法比较简单,不需要复杂的程序语言,但是其缺点是在加工过程中容易产生扎刀的现象,需要特别注意这方面的问题。 斜进法,利用斜进法加工蜗杆属于两刃切削,其切削抗力可以通过减少切削面积来降低。这种方法与直进法不同,发生扎刀的可能性不高,更加适应于蜗杆的粗车。G76指令功能是将直进法和斜进法相结合,如果蜗杆的模数较大,经常出现的情况是,在最后一刀直进切削后会产生扎刀的现象。 左右切削法,利用左右切削法加工蜗杆属于单刃切削,其背向力并不高,在加工过程中能对扎刀现象进行有效的控制,能完成蜗杆粗车和精车的制作,但是其缺点是整个加工过程比较复杂,并且工作效率不高。 单刃调头切削法,利用单刃调头切削法进行加工,需要采用双顶尖装夹工件,为了避免扎刀现象的出现,主要利用一个受力,保证刀的切削刃单向切削,这样也能保证蜗杆所加工出来的齿侧表面质量较高,满足了蜗杆进行精加工的条件。需要特别注意二次装夹后的对刀问题,在加工过程中二次装夹的实现,需要根据一转信号起始位置确定,可以通过在卡盘上进行划线定位,并对起刀点的位置进行修改。 合理控制扎刀现象的产生 扎刀现象一般产生在吃刀量不变化的状况下,由于刀具的背吃刀量在切削的过程中增大,所以工件的表面有刀具的扎入。另外积屑瘤的产生和工艺系统的刚性都在一定程度上影响着扎刀现象的出现。以下主要阐述控制扎刀现象的方法: 1、在选择加工方法的时候需要结合机床的刚性情况,可以对切削面积进行降低,从而降低背向力对扎刀现象发生的概率。另外积屑瘤也容易导致扎刀现象的产生,因此可以对积屑瘤的产生进行控制。 2、需要准确选择刀具的几何角度,如果是粗车刀,采用正值径向前角进行操作;如果是精车刀,需要采用的前角一般较大。在对蜗杆进行精加工时,采用的车刀是零度的径向前角,一旦选择了正值径向前角,会造成牙型误差,另外在精车换刀时候也容易产生对刀的误差,因此需要严格控制径向前角的大小,保证误差在可接受的范围内。 3、在使用粗车的过程中,可以利用转位弹簧刀杆,这对扎刀出现的情况能进行降低,可以推广使用。 4、实际加工过程中乳化液、矿物油在润滑效果方面表现不明显,我们需要对切削液进行合理的选择。在粗车使用时,利用白铅油或者红铅粉和全系统换耗用油的混合剂进行配制,进行冷却润滑。精车利用全系统换耗用油和煤油进行混合配制,能起到提高工件加工表面质量的作用。 5、在切削过程中如果受到螺旋升角的影响,一侧切削刀受力弯曲,刀刃会逐渐向远离工件的方向移动,这时候容易产生让刀的现象。因此,可以选择让刀一侧的刀刃进行蜗杆的加工,能在一定程度上避免扎刀现象的产生。除此之外还需要注意,如果在加工蜗杆的过程中由于让刀而产生径向振纹,其原因可能是切削刃的工作前角较小。 变换转速对切削螺纹螺距误差的影响 一般数控车床在对螺纹进行加工的过程中,如果转速存在变换,螺纹螺旋线会在轴向产生一定的偏动现象,从而就会形成螺距的误差。如果转速的变化在两级转速范围内,则螺距误差是一常数,该数值可以在加工过程中测量得到。为了避免乱扣现象,需要通常对起刀点的位置进行修改[3]。 刀具粗精车的换刀问题 工件一次安装需要在数控车床上注意车刀的更换问题,要保证两把车刀在同一位置上,并在X轴和Z轴上的坐标是相同的。加工时可以使用简单的对刀方法,当外圆获得X轴相对坐标之后,需要进行对刀处理,要保证该工件倒角的X值是相同的,还需要对第二把刀输入第一把刀Z值的坐标,进行一定程度的补偿。这种对刀的方法并不存在试切削程序,但是要保证对刀的误差在0.05毫米的范围内。 结语:综上所述,利用数控车床上加工蜗杆在很多方面都体现了优势,不仅不需要工人具有过多的操作技能,能在数控车床上进行车削大导程蜗杆和螺纹,还能保证数控车床的精准度,从而彻底改变了传统蜗杆车刀的习惯,合理控制了刀尖角,对切削力进行了一定程度的减小,提高了蜗杆的质量和生产效率。
08
2021-10
​影响数控机床加工精度的3大因素及2大对策
数控机床在进行加工过程中难免会受到各种各样因素的影响,使得其加工精度产生一定的偏差,给生产生活带来一些不便。怎样提高数控机床加工精度是金粉们很关心的事情。1.数控机床加工中的精度问题 1.1数控机床加工中的位置误差对加工精度的影响 位置误差是指加工后零件的实际表面、轴线或对称平面之间的相互位置相对于其理想位置的变动量或偏离程度,如垂直度、位置度、对称度等。数控机床加工中的位置误差通常指死区误差,产生位置误差的原因主要在机床零件加工时由于传动时产生的间隙和弹性变形导致加工误差,以及在加工中,机床的刀头需要克服摩擦力等因素导致产生位置误差。在开环系统中位置精度受到的影响是很大的,而在闭环随动系统中,则主要取决于位移检测装置的精度和系统的速度放大系数,一般影响较小。 1.2数控机床加工中由于几何误差导致的加工精度误差 数控机床加工中,由于刀具和夹具在受外力和加工中产生的热量等外界因素的影响下,机床的几何精度受到影响,机床上加工的零部件产生几何变形,从而导致产生几何误差。据研究,数控机床产生几何误差的主要原因无外乎以下两种:内部因素和外部因素。机床产生几何误差的内部因素指机床本身的因素导致的几何误差,如机床的工作台面的水平度、机床导轨的水平程度和直线度、机床刀具和夹具的几何准确程度等。外部因素主要是指在外部环境和加工过程中的热变形等因素影响下产生的几何误差,如刀具或零部件在切削过程中,由于受热膨胀、变形,从而产生几何误差,影响了机床的加工精度和零部件的加工精度。 1.3数控机床加工中由于机床定位导致的加工精度误差 通过长期的零部件加工的数据分析和实践操作看出,机床定位对于数控机床的加工精度有较大影响。数控机床的加工误差,从结构上看,多由定位精度引起,其中机床的进给系统是影响定位精度的主要环节。数控机床的进给系统通常由机械传动系统和电气控制系统两部分组成,定位精度与结构设计中的机械传动系统有关。在闭环系统中,数控机床通常可以通过定位检测装置防止进给系统中的主要部件产生位置偏差,如滚珠丝杠等部件。而对于开环系统,由于影响因素较多、情况比较复杂,无法进行定位监控,所以对数控机床的加工精度影响较大。 2.提高数控机床加工精度的对策 在数控机床的加工过程中,其所加工的零部件的精度直接影响产品的质量,部分机械零部件和精密设备的零部件对加工精度的要求非常高,提高数控机床的加工精度是解决问题的关键所在。通过广泛的研究与分析得出,提高数控机床的加工精度的对策大致有以下几种方法: 2.1通过控制数控机床的原始误差提高加工精度 数控机床加工过程中,误差本身是不可避免的,被加工零件与数控机床之间存在必然的误差,这种一定存在的误差称为原始误差。 因此,要提高数控机床的加工精度,控制数控机床的原始误差是重要对策之一。针对产生原始误差的可能性要进行系统的分析,根据误差产生的原因和误差类型要制定相应的改进措施。机械零件在加工过程中,数控机床的位置精度、几何精度对零部件的加工精度有重要影响,要通过位置控制和几何精度控制来减少位置误差和几何误差对零件的影响。同时对于加工过程中产生的变形误差,要用风冷、水冷等方法控制加工过程中的热变形,减少热变形误差带来的加工精度影响。同时对于位置误差,要合理选择适合零件材质的刀具,避免刀具变形,同时根据被加工零件的胚料形状选择合理的夹具,有必要的情况下要针对零部件的形状尺寸专门设计夹具,避免产生位置误差。 2.2合理设计机床核心部件避免定位误差 机床的定位精度对零部件的精度有重要影响,影响机床定位精度的核心部件如进给系统、导轨、工作台面等的直线度、水平度等。在设计数控机床时,要合理选择核心部件,例如在选择目前在机床中广泛使用的滚珠丝杠时,应当充分考虑滚珠丝杠的精度,应当选取和安装比较成熟的滚珠丝杠技术。滚珠丝杠的支撑同样不可忽视,滚珠丝杠的支撑与系统的传动精度密切相关,滚珠丝杠的支撑主要由轴向载荷和回转速度决定,对数控车床的加工精度有重要影响,通常选用高精度的固定和支撑方式。并且设计过程中应严格对滚珠丝杠的承载能力要进行相关校核。而拖链,作为机床外防护的一部分,现在对机床来说已经不可或缺。由于其链节结构,在跟随刀架运动时,也会产生一定的振动,这种振动,会直接传递到刀具上,最终会对加工精度造成一定的影响。 因此,拖链的性能,大大决定了机床精度。易格斯的E6系列拖链,经过特殊设计,可以极大地降低振动和噪音,把拖链运动给机床精度带来的影响降低到最低。 另外,易格斯E6系列拖链采用了小节距,无孔销连接方式的聚合弹簧,零磨损,适合高速及高加速度场合应用。速度V=1.8m/s的情况下,噪音只有37Db(A),亦可应用于无尘室等行业。 2.3通过实时监控技术提高数控机床的加工精度 随着数控技术的不断提高,对数控机床进行加工过程全程实时监控,及时调整加工过程中的误差环节,并对加工过程中的每一个环节的误差数据进行采集,并反馈至控制终端,并通过误差数据采取相应的误差补偿机制,进行及时的误差补偿,能够有效提高零件的加工精度。
07
2021-10
​CNC数控机床工作原理
一、数控机床工作原理--简介  CNC,数控机床,全称为数字控制机床,英文名称为Computernumericalcontrolmachinetools,是一种装有程序控制系统的自动化机床,是集机床、计算机、电机及拖动、自动控制、检测等技术为一体的自动化设备,可按照要求自动将零件加工出来,无需人工操作。数控机床较传统机床而言,具有柔性高、精度高、生产率高、稳定性高、可靠性高、自动化程度高、适应性强等多重优点,是现代机床控制技术的发展方向,是一种典型的机电一体化产品。 二、数控机床工作原理--结构  数控机床主要由加工程序载体、数控装置、伺服系统、机床主体和其他辅助装置构成。其中,加工程序载体主要用于完成操作的自动化,无需人工进行操作;数控装置是数控机床最核心的部分,包括输入、处理和输出三个基本模块,主要采用计算机数控系统(ComputerNumericalControl,简称CNC)来以软件的形式实现数控的功能;伺服系统主要用于接收数控装置发出的指令,并经功率放大、整形处理后转换成机床执行部件的直线位移或角位移运动;机床主体指的是数控机床的机械主体,用来完成各种切削加工的操作。 三、数控机床工作原理  数控机床进行加工,首先必须将工件的几何数据和工艺数据等加工信息按规定的代码和格式编制成数控加工程序,并用适当的方法将加工程序输入数控系统。数控系统对输入的加工程序进行数据处理,输出各种信息和指令,控制机床各部分按规定有序地动作。数控机床的运行处于不断地计算、输出、反馈等控制过程中,从而保证刀具和工件之间相对位置的准确性。
30
2021-09
​CNC数控车床高斯曲线加工
CNC车床高斯曲线加工随着新产品研制的发展,许多新产品的形状采用了特殊曲线,如椭圆、双曲线和高斯曲线等,而如何加工这些特殊曲线就成了机加人员的新课题。 从多年的实践来看,采用宏程序编程,然后在数控车床上车削是较为简单、经济和方便的一种方法。 但是这种方法对于编程者要求较高,这是因为宏程序的编制要求程序员不仅具有丰富的数学知识,还要熟悉数控车床的编程指令,对于宏程序更应是了如指掌。 宏程序分为A类和B类两种:A类宏程序通常采用H代码编制,B类宏程序通常用赋值语句和数学公式进行编制,易为大家接受,FANUC0i型数控系统的宏程序就是B类。▽长按爱心,添加小编,技术交流▽ 一、FANUC0i型数控系统宏程序在FANUC0i型数控系统中变量分为4种类型,即空变量、局部变量、公共变量和系统变量。空变量的变量号为#0,该变量总为空,没有值能赋给该变量;局部变量的变量号为#1~#33,该类变量只能用于在宏程序中存储数据,当断电时局部变量初始化为空,调用宏程序时,给局部变量赋值。公共变量的变量号为#100~#199、#500~#999,公共变量在不同的宏程序中的意义相同。当断电时,变量#100~#199初始化为空,变量#500~#999中的数据保存,即使断电也不丢失。系统变量的变量号为#1000~,系统变量用于读和写CNC的各种数据,例如刀具的当前位置和刀具补偿值等。我们在编写宏程序时可以引用局部变量和公共变量,在引用变量,特别是公共变量时,为消除变量内原有数据的影响,一定要给变量重新赋值后再引用。 宏程序是用户实现机床功能扩展的一种方法。在宏程序中可以使用变量,给变量赋值,变量间可进行运算和程序跳转。此外,宏程序还提供了循环语句、分支语句和子程序调用语句,一层宏循环里还可以嵌套多层循环。所以可以应用宏程序指令编制出简洁合理的小容量加工程序,扩展数控机床功能,提高加工效率,充分发挥数控机床的作用。 二、高斯曲线的方程高斯曲线在直角坐标系下的方程是 ,其中x是自变量,y是因变量。但此方程我们还不能直接应用于数控车床,因为在数控车床上,坐标系是这样规定的:Z轴与主轴轴线平行,正方向是远离工件方向,X轴与主轴轴线垂直,正方向是远离主轴轴线方向。因此我们需要把直角坐标系的方程转换为数控车床坐标系下的方程,同时数控车床不能识别指数函数和平方等数学符号,这就需要用宏程序中的算术和逻辑运算符号替换其中的数学符号,变成数控车床可识别的公式。 经变换后高斯曲线在数控坐标下的方程如下。X=140.6/EXP(((z-620)/1339)*((z-620)/1339))+9.358/EXP(((z+251.5)/351.8)*((z+251.5)/351.8))+24.58/EXP(((z+740.4)/464.1)*((z+740.4)/464.1)) 三、数控车床加工特殊曲线的方法数控车床可通过G01、G02等G代码直接加工直线、圆弧,但并没有专门的G代码来加工椭圆、双曲线和高斯曲线等特殊曲线。在加工此类曲线时一般采用直线逼近法,即在Z方向上依次递减或递增,以0.05mm~0.5mm为一个步距,每递减或递增一个步距得到一个Z值。然后,通过曲线方程计算求出对应的X值,再将刀具直线插补至计算得出的(X,Z)值所确定的点,依次插补便可完成特殊曲线的加工。 四、编制加工高斯曲线的宏程序现以一个简单的零件为例,说明高斯曲线的宏程序编制过程。如图1所示,在Φ260mm的毛坯棒料上加工一段长100mm的高斯曲线外轮廓。图1是直角坐标系下的零件图样,图2是数控坐标下的零件图样。1490873504692141.png1490873504561622.png 在高斯曲线数控坐标方程中,我们用#101表示自变量z,用#102表示(z-620)/1339,用#103表示(z+251.5)/351.8,用#104表示(z+740.4)/464.1,用#105表示因变量x,则高斯曲线的方程可表示为: #105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104+#104) 编制精加工程序如下:O0001N10#101=0;(自变量初值)N20#102=(#101-620)/1339;N30#103=(#101+251.5)/351.8;N40#104=(#101+740.4)/464.1;N50#105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104*#104);N60G01X[2*#105]Z[-#101]F0.2;(直线逼近法加工高斯曲线)N70#101=#101+0.1;(z值递增一个步距)N80IF[#101LE100.0]GOTO20;N90G01X265.0;N90G00X100.0Z100.0;N100M30;以上程序为最后一刀的精加工程序,在实际加工中要考虑到毛坯的余量,这就需要先粗车,再精车。粗车同样也是沿轮廓车削,可采用G71或者G73指令粗车,然后用G70指令精车,编制完整的程序如下。 O0002N10G40G21G97G99;N20M03S800;N30T0101;N40G00X262.0Z2.0;N50G73U9.0R9.0;N60G73P70Q150U0.3W0.0F0.2;N70#101=0;(自变量初值)N80#102=(#101-620)/1339;N90#103=(#101+251.5)/351.8;N100#104=(#101+740.4)/464.1;N110#105=14.6/EXP(#102*#102)+9.358/EXP(#103*#103)+24.58/EXP(#104*#104);N120G01X[2*#105]Z[-#101]F0.1S1000;(直线逼近法加工高斯曲线)N130#101=#101+0.1;(z值递增一个步距)N140IF[#101LE100.0]GOTO80;N150G01X265.0;N160G70P70Q150;N170G00X100.0Z100.0;N180M30; 虽然随着CAD/CAM软件的应用,手工编程、宏程序应用空间日趋缩小,但是在某些情况下PC机也无能为力,这就要求我们深挖手工编程,发挥数控机床潜力。同时宏程序与自动编程比较具有运算速度快、加工效率高、加工精度高以及短小精悍等优点。
29
2021-09
​数控机床的自动换刀装置,你认识几种?
数控机床为了能在工件一次装夹中完成多道加工工序,缩短辅助时间,减少多次安装工件所引起的误差,必须带有自动换刀装置。自动换刀装置应当满足换刀时间短、刀具重复定位精度高、刀具储存量足够、刀库占地面积小以及安全可靠等基本要求。 一、自动换刀装置的形式1.回转刀架换刀回转刀架是一种最简单的自动换刀装置,常用于数控车床。可以设计成四方刀架、六角刀架或圆盘式轴向装刀刀架等多种形式。回转刀架上分别安装着四把、六把或更多的刀具,并按数控装置的指令换刀。回转刀架在结构上必须具有良好的强度和刚度,以承受粗加工时的切削抗力。由于车削加工精度在很大程度上取决于刀尖位置,对于数控车床来说,加工过程中刀具位置不进行人工调整,因此更有必要选择可靠的定位方案和合理的定位结构,以保证回转刀架在每次转位之后,具有尽可能高的重复定位精度(一般为0.001~0.005mm)。一般情况下,回转刀架的换刀动作包括刀架抬起、刀架转位及刀架压紧等。2.更换主轴头换刀(刀具旋转为主运动)更换主轴换刀是带有旋转刀具的数控机床的一种比较简单的换刀方式。这种主轴头实际上就是一个转塔刀库。主轴头有卧式和立式两种,通常用转塔的转位来更换主轴头,以实现自动换刀。在转塔的各个主轴上,预先安装有各工序所需要的旋转刀具,当发出换刀指令时,各主轴头依次地转到加工位置,并接通主运动,使相应的主轴带动刀具旋转。而其它处于不加工位置上的主轴都与主运动脱开。这种更换主轴换刀装置,省去了自动松、夹、卸刀、装刀以及刀具搬运等一系列的复杂操作,从而缩短了换刀时间,并提高了换刀的可靠性。但是由于空间位置的限制,使主轴部件结构尺寸不能太大,因而影响了主轴系统的刚性。为了保证主轴的刚性,必须限制主轴的数目,否则会使结构尺寸增大。因此,转塔主轴头通常只适用于工序较少、精度要求不太高的机床,例如数控钻、铣床等。3.带刀库的自动换刀系统由于回转刀架、转塔头式换刀装置容纳的刀具数量不能太多,不能满足复杂零件的加工需要,因此,自动换刀数控机床多采用带刀库的自动换刀装置。带刀库的自动换刀装置由刀库和换刀机构组成,换刀过程较为复杂。首先要把加工过程中使用的全部刀具分别安装在标准刀柄上,在机外进行尺寸预调整后,按一定的方式放入刀库。换刀时,先在刀库中选刀,再由换刀装置从刀库或主轴上取出刀具,进行交换,将新刀装入主轴,旧刀放回刀库。刀库具有较大的容量,既可安装在主轴箱的侧面或上方。由于带刀库的自动换刀装置的数控机床的主轴箱内只有一根主轴,主轴部件的刚度要高,以满足精密加工要求。另外,刀库内刀具数量较大,因而能够进行复杂零件的多工序加工,大大提高了机床的适应性和加工效率。带刀库的自动换刀系统适用于数控钻削中心和加工中心。 二、刀库和刀具的选择方式1.刀库类型刀库的作用是储备一定数量的刀具,通过机械手实现与主轴上刀具的互换。刀库的类型有盘式刀库、链式刀库等多种形式,刀库的形式和容量要根据机床的工艺范围来确定。图7-16所示的盘式刀库,刀具的方向与主轴同向,换刀时主轴箱上升到一定的位置,使主轴上的刀具正好对准刀库最下面的那个位置,刀具被夹住,主轴在CNC的控制下,松开刀柄,盘式刀库向前运动,拔出主轴上的刀具,然后刀库将下一个工序所用的刀具旋转至与主轴对准的位置,刀库后退将新刀具插入主轴孔中,主轴夹紧刀柄,主轴箱下降到工作位置,完成换刀任务,进行下道工序的加工。此换刀装置的优点是结构简单,成本较低,换刀可靠性较好;缺点是换刀时间长,适用于刀库容量较小的加工中心。对于刀库容量需要较大的加工中心可采用链式刀库(图7-17),链式刀库的结构紧凑,刀库容量较大,链环的形状可根据机床的布局制成各种形状,也可将换刀位突出以便于换刀。当需要增加刀具数量时,只需增加链条的长度即可,给刀库设计与制造带来了方便。2.刀具的选择方式一般的刀库内存放有多把刀具,每次换刀前要进行选刀,常用的选刀方法有顺序选刀和任意选刀两种,顺序选刀是在加工之前,将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,加工是按顺序调刀,加工不同的工件时必须重新调整刀库中的刀具顺序。其优点是刀库的驱动和控制都比较简单。因此,这种方式适合加工批量较大、工件品种数量较少的中、小型数控机床的自动换刀。随着数控系统的发展,目前大多数的数控系统都采用任意选刀的方式,其分为刀套编码、刀具编码和记忆式等三种。3.刀具编码方式刀具编码或刀套编码需要在刀具或刀套上安装用于识别的编码条,一般都是根据二进制编码的原理进行编码。刀具编码选刀方式采用了一种特殊的刀柄结构,并对每把刀具编码。每把刀具都具有自己的代码,因而刀具可在不同的工序中多次重复使用,换下的刀具不用放回原刀座,刀库的容量也可相应减少。但每把刀具上都带有专用的编码环,刀具长度加长,制造困难,刀库和机械手的结构变复杂。刀套编码的方式是一把刀具只对应一个刀套,从一个刀套中取出的刀具必须放回同一刀套中,取送刀具十分麻烦,换刀时间长。目前在加工中心上大量使用记忆式的方式。这种方式能将刀具号和刀库中的刀套位置对应地记忆在数控系统的PLC中,无论刀具放在哪个刀套内,刀具信息都始终记存在PLC内。刀库上装有位置检测装置,可获得每个刀套的位置信息。这样刀具就可以任意取出并送回。刀库上还设有机械原点,使每次选刀时就近选取。 三、刀具交换装置数控机床的自动换刀装置中,实现刀库与机床主轴之间传递和装卸刀具的装置称为刀具交换装置。刀具的交换方式有两种:由刀库与机床主轴的相对运动实现刀具交换以及采用机械手交换刀具。利用刀库与机床主轴的相对运动实现刀具交换的装置在换刀时必须首先将用过的刀具送回刀库,然后再从刀库中取出新刀具,两个动作不能同时进行,换刀时间较长。而采用机械手换刀装置在换刀时能够同时抓取和装卸机床主轴和刀库中的刀具,因此换刀时间进一步缩短。采用机械手进行刀具交换的方式应用最广泛。这是因为机械手换刀灵活,动作快,而且结构简单。机械手能够完成抓刀—拔刀—回转—插刀—返回等一系列动作。为了防止刀具掉落,机械手的活动爪都带有自锁机构。
东莞市沃尔鑫五金机械有限公司 Copyright © 2021 版权所有 技术支持:东莞网站建设