05
2022-05
数控机床机械手换刀装置故障与维修
  在数控机床的维修中,与换刀相关的故障极为多见。本文基于机械手换刀装置的结构与动作控制,结合维修实例,归纳常见故障现象、原因及处理措施,在数控机床的维修与改造中具有较大的现实意义,值得认真探索、交流与推广。   数控机床特别是数控加工中心高精度、高效率的重要原因之一在于其一次装夹、多工序自动加工,而实现这一功能的关键在于自动换刀装置。由于自动换刀装置工作频度高、控制机构复杂,包括刀库、刀具交换以及驱动等部分,因此出现故障的几率也大,在数控机床的维修中占有相当大的比例。了解其结构特点与控制机理,熟悉换刀的动作流程,总结归纳常见故障现象、原因及解决措施,借鉴相关维修实例,有助于快速、准确地诊断并排除故障,提高维修工作的质量与效率。   1.机械手换刀装置的结构   数控机床自动换刀功能的实现有多种方式。按是否由机械手换刀可将其分为两类:无机械手换刀(如斗笠式)大多依靠主轴与刀库间的轴向相对运动实现拔刀与插刀,换刀时刀库移至换刀位置,主轴先将刀具还回刀库换刀位的空刀座上,然后刀库旋转使下一工序所需刀具进入换刀位置,主轴再从刀库取走新的刀具,还刀和取刀两个动作只能分步进行,加之主轴的轴向运动以及刀库的移动和转动,因此换刀时间长,加工效率低,刀库的容量也较小;目前数控机床更多采用的是机械手换刀,利用机械手快速、准确地对调刀库中换刀位与主轴上的刀具,还刀、取刀同时进行,换刀时间大大缩短,而且刀库容量不受换刀机构限制。   1.刀具固定板架2.刀座3.换刀机械手 4.换刀位置刀座5.取刀机械手纵向导轨 6.取刀机械手横向导轨   刀库按刀具的布局可分为盘式、链式和格子式三种。盘式刀库刀具呈圆周状分布,链式刀库刀具布置在链条的各个环节上,格子式刀库刀具纵横排列。盘式刀库空间利用率低、容量小,一般用于小型加工中心。链式与格子式刀库空间利用率高、容量大,用于中型与大型数控加工中心。刀库的作用不仅是存放加工过程中所需要的刀具,还负责把下一工序所要使用的刀具准确地送到换刀位置。   刀具交换装置的驱动方式有液压、伺服和交流异步电动机驱动三种。液压驱动需要足够的液压动力,且运动的速度和准确性受油质、油压、油温及环境等因素影响,一般用于不需要频繁换刀的大中型机床。伺服电动机驱动的换刀装置换刀速度快、精度高、稳定性强,但成本较高。交流异步电动机驱动的换刀装置,借助凸轮机构,换刀速度快、定位准、稳定性高、连贯性好且成本低,广泛用于频繁换刀的中小型加工中心。   2.机械手换刀动作流程与选刀方式   刀库的选刀有顺序选刀、刀具编码选刀、刀座编码选刀和随机选刀四种方式。机械手换刀大多采用随机换刀方式,从主轴取下的刀具就近放入刀库中刚取走刀具的换刀位刀座内,取刀与还刀同步完成。其原理是在存储器中建立换刀数据表,表中存储单元的地址与刀座编号及主轴相对应,因此数据表的容量为刀库中刀座数加1,存储单元中的数据与刀具编号一一对应,如附表所示。换刀时数据更新是先将主轴所对应的存储单元中的数据(换刀前刀具的编号)写入刀库换刀位刀座所对应的存储单元中,再将换刀指令中的刀具编号写入主轴所对应的存储单元,完成主轴与换刀位刀具编号的对换。假设数据表存储单元首地址为D300,该地址所对应存储单元中存放的数据即为主轴上刀具的编号,地址为D301~D(300+n)的存储单元中的数据,即刀库中从1#~n#刀座上刀具的编号。   3.机械手换刀装置的常见故障与排除方法   在数控机床维修的过程中,经常出现与换刀相关的故障,根据其结构特点及换刀动作过程,归纳刀库及机械手两大方面常见故障现象、产生原因与采取措施如下。   (1)刀库故障。 ①常见故障1:刀库不能转动。可能原因:电动机轴与蜗杆轴的联轴器松动;变频器故障,电动机不得电;接近开关或磁簧开关故障;PLC无输出控制,或PLC有输出但接口板中的继电器失效;气压低。常用措施:检查调整联轴器;检查变频器的输入、输出电压是否正常;通过PLC的IO监控画面检查IO状态,调整或更换接近开关或磁簧开关,检查或更换继电器;调整气压达到规定值。   ②常见故障2:刀盘定位不准。可能原因:电动机剎车器磨损。常用措施:调整电动机剎车器中调节螺钉。   ③常见故障3:换刀位刀座在倒刀时不正常。可能原因:气压不符合要求、止动螺丝松动、气缸损坏、倒刀电磁阀接触不良或损坏、刀具超重或超长。常用措施:调整气压到符合要求、锁紧止动螺丝、更换气缸、检查电磁阀接点或更换元件、更换刀具。   ④常见故障4:刀套上下不到位。可能原因:安装调整不当或拨叉位置不正确、限位开关安装不正确或调整不当,造成反馈信号错误。常用措施:检查、调整拨叉或限位开关位置,或更换元件。   ⑤常见故障5:倒刀时刀具掉落。可能原因:刀套内弹簧夹力不够或不能正常复位、刀柄和拉钉的距离不正确。常用措施:调整或更换元器件。   ⑥常见故障6:刀套破裂。可能原因:刀套未定位前有倒刀动作或未回位前刀盘转动、装入刀具时撞坏。常用措施:调整刀盘定位近接开关或倒刀气缸磁簧开关位置、更换刀套。   ⑦常见故障7:电动机烧坏。可能原因:电源缺相或电压不正确、剎车烧坏、刀具超重、组件不能运转。常用措施:检查接触器接点是否损坏、电源是否缺相及电压等级是否匹配;检测剎车器线圈是否损坏、接地是否正确;检查刀具质量是否超过允许值;检查刀套滑动部位是否顺畅。   (2)机械手故障。 ①常见故障1:刀具夹不紧,时常掉刀。可能原因:卡爪弹簧的压力太小、弹簧后面的螺母松动、机械手卡紧锁不起作用、刀具超重。常用措施:拧紧弹簧后螺母、调整或更换卡紧锁、更换弹簧、更换刀具。   ②常见故障2:刀具夹紧后松不开。可能原因:卡爪弹簧压合过紧,卡爪缩不回。常用措施:调松螺母或更换弹簧,使最大载荷不超过额定值。   ③常见故障3:刀具交换时掉刀。可能原因:换刀时主轴箱没回到换刀点或换刀点漂移;机械手抓刀时没有到位就开始打刀或拔刀、刀臂及刀具的夹刀点不正确,打刀缸松拉刀位置不准确,打刀缸压力不够,松刀不正常、刀具太重、刀臂变形。常用措施:应重设定换刀点;校正夹刀点、调整打刀缸松刀行程、调整压力值、检查刀具质量、更换刀臂。   ④常见故障4:刀臂不回位。可能原因:电路接触不良、无夹刀或松刀信号、刀臂弯曲。常用措施:执行手动换刀,检查是否电路故障;用PLC监看夹刀或松刀信号,调整近接开关位置、调整或更换刀臂。   4.维修实例 (1)案例1。 故障现象:加工中心VMC1000C换刀时出现主轴掉刀故障。 故障诊断与排除方法: ①检查机械手手臂上两个卡爪的弹簧及附件,没有发现异常,说明机械手夹持刀具没有问题。 ②拆开主轴检查碟簧能否对刀具夹持紧固,发现碟簧完好。 ③打开PLC的IO监控画面,反复按压主轴刀具夹紧到位行程开关,发现其“0”、“1”状态与实际动作不一致,说明该行程开关有问题,更换后故障排除。   (2)案例2。故障现象:加工中心BX-110P机械手取送刀具时不能缩爪。 故障诊断与排除方法:打开PLC的IO监控画面,发现相应的限位开关没有压合;调整其位置后,机床恢复正常。但一段时间之后,再次出现此故障,检查限位开关没有松动,但却没有压合,进一步检查发现液压缸拉杆顶端锁紧螺母的紧固螺钉松动,致使液压缸伸缩的行程发生了变化;调整锁紧螺母并拧紧紧固螺钉后,此故障排除。   5.结语   机械手换刀装置是数控机床最重要的功能部件之一,掌握其结构特点、控制机理,不断总结归纳常见故障现象、原因及解决措施,不但有助于提高维修数控机床的效率与质量,对机床的维护与改造也有重要的参考意义。
04
2022-05
​CNC加工中心、雕铣机、雕刻机这三者到底怎么区别?
  加工中心、雕铣机、雕刻机,之间有什么区别?,相信很多刚刚加入这个圈的朋友都会问,然后在买机械设备的时候不太懂,不知道怎么区分,到底应该买什么样的设备,才能达到自己的需求,这里小编就为大家扒一扒他们三者之间的区别。   雕铣机:   顾名思义就是可以雕、也可铣,在雕刻机的基础上加大了主轴、伺服电机功率,床身承受力,同时也保持主轴的高速。雕铣机还向高速发展,一般称为高速机,切削能力更强,加工精度非常高,还可以直接加工硬度在HRC60以上的材料,一次成型,广泛用于精密模具模仁粗精加工一次完成,模具紫铜电极,铝件产品批量加工,鞋模制造,治具加工,钟表眼境行业。由于性价比高,加工速度快,加工产品光洁度好,在机床加工业越来越占有重要地位。   CNC加工中心:   港台、广东一带又称之为电脑锣,在加工中心上加工零件的特点是:被加工零件经过一次装夹后,数控系统能控制机床按不同的工序自动选择和更换刀具;自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其它辅助功能,连续地对工件各加工面自动地进行钻孔、锪孔、铰孔、镗孔、攻螺纹、铣削等多工序加工。由于加工中心能集中地、自动地完成多种工序,避免了人为的操作误差、减少了工件装夹、测量和机床的调整时间及工件周转、搬运和存放时间,大大提高了加工效率和加工精度,所以具有良好的经济效益。加工中心按主轴在空间的位置可分为立式加工中心与卧式加工中心。   雕刻机:   扭矩比较小,主轴转速高适合小刀具的加工,着重于“雕刻”功能,不太适合强切削的大工件。目前市面上的大多数打着雕刻机旗号的产品都是为加工工艺品为主,成本低,由于精度不高,不宜用于模具开发。   雕铣机、加工中心。雕刻机指标数据方面对比   主轴最高转速(r/min):加工中心8000;雕铣机最常见240000,高速机最低30000;雕刻机一般与雕铣机相同,用于高光处理的雕刻机可以达到80000,但那用的就不是一般的电主轴而是气浮主轴。  主轴功率:加工中心最大,从几千瓦到几十千瓦都有;雕铣机次之,一般在十千瓦以内;雕刻机最小。   切削量:加工中心最大,特别适合重切削,开粗;雕铣机次之,适合精加工;雕刻机最小。   速度:由于雕铣机和雕刻机都比较轻巧,它们的移动速度和进给速度比加工中心要快,特别是配备直线电机的高速机移动速度最高达到120m/min。   精度:三者的精度差不多。   从加工尺寸上讲:工作台面积可以比较好的反应这个。国内加工中心(电脑锣)最小的工作台面积(单位mm,下同)在830*500(850机);雕铣机的最大的工作台面积在700*620(750机),最小的是450*450(400机);雕刻机一般不会超过450*450,常见的是45*270(250机)。   从应用对象上讲:加工中心用于完成较大铣削量的工件的加工设备,大型的模具,硬度比较的材料,也适合普通模具的开粗;雕铣机用于完成较小铣削量,小型模具的精加工,适合铜工、石墨等的加工;低端的雕刻机则偏向于木材、双色板、亚克力板等硬度不高的板材加工,高端的适合晶片、金属外壳等抛光打磨。   在国外根本没有有雕铣机的名词(CNCengraving.millingmachine),严格地讲雕是铣的一部分,所以外国只有加工中心的概念,并且由此衍生出小型加工中心的概念来代替雕铣机。购买雕刻机还是购买数控铣式加工中心是经常要问自己的问题,要看实际生产需要。另外,还有目前盛行的高速切削机床(HSCMACHINE),国内则称为高速机。   让我们搞清楚三个机型的区别:   数控铣和加工中心用于完成较大铣削量的工件的加工设备 数控雕铣机用于完成较小铣削量,或软金属的加工设备 高速切削机床用于完成中等铣削量,并且把铣削后的打磨量降为最低的加工设备   深入分析上述设备的结构和数据加工类型可以帮我们做出正确的选择。文章已经很详细的讲了雕铣机和加工中心及雕刻机的区别了,相信大家应该心里对这三者都有一定的了解了。
29
2022-04
数控机床加工常见的8种故障及解决方案都在这里
  金属切削刀具通过数控机床切除工件上多余的金属,从而使工件成型。数控机床、工具系统和刀具管理是发挥数控机床加工效率、保证加工质量的基础。所以数控机床在加工中的常见故障和解决方法与刀具有着直接的关系。以下是数控加工过程中经常遇到的一些故障,解决的方法也有很多种,所以如果没有足够的经验直接找到问题切入点,也可以使用“排除法”进行比较。这些故障和检测方法是经过加工测试,为大家在工作时遇到问题作为参考依据。                               1、工件尺寸准确,表面光洁度差 故障原因 刀具刀尖受损,不锋利; 机床产生共振,放置不平稳; 机床有爬行现象; 加工工艺不好。 解决方案: 刀具磨损或受损后不锋利,则重新磨刀或选择更好的刀具重新对刀;机床产生共振或放置不平稳,调整水平,打下基础,固定平稳;机械产生爬行的原因为拖板导轨磨损厉害,丝杠滚珠磨损或松动,机床应注意保养,上下班之后应清扫铁丝,并及时加润滑油,以减少摩擦;选择适合工件加工的冷却液,在能达到其他工序加工要求的情况下,尽量选用较高的主轴转速。 2、工件产生锥度大小头现象 故障原因 机床放置的水平没调整好,一高一低,产生放置不平稳; 车削长轴时,贡献材料比较硬,刀具吃刀比较深,造成让刀现象; 尾座顶针与主轴不同心。 解决方案: 使用水平仪调整机床的水平度,打下扎实的地基,把机床固定好提高其韧性;选择合理的工艺和适当的切削进给量避免刀具受力让刀;调整尾座。 3、驱动器相位灯正常,而加工出来的工件尺寸时大时小 故障原因 机床拖板长期高速运行,导致丝杆和轴承磨损; 刀架的重复定位精度在长期使用中产生偏差; 拖板每次都能准确回到加工起点,但加工工件尺寸仍然变化,此种现象一般由主轴引起,主轴的高速转动使轴承磨损严重,导致加工尺寸变化。 解决方案: 用百分表靠在刀架底部,同时通过系统编辑一个固定循环程序,检查拖板的重复定位精度,调整丝杆间隙,更换轴承;用百分表检查刀架的重复定位精度,调整机械或更换刀架;用百分表检测加工工件后是否准确回到程序起点,若可以,则检修主轴,更换轴承。 4、工件尺寸与实际尺寸相差几毫米,或某一轴向有很大变化 故障原因 快速定位的速度太快,驱动和电机反应不过来; 在长期摩擦损耗后机械的拖板丝杆和轴承过紧卡死; 刀架换刀后太松,锁不紧; 编辑的程序错误,头、尾没有呼应或没取消刀补就结束了; 系统的电子齿轮比或步距角设置错误。 解决方案: 快速定位速度太快,则适当调整GO的速度,切削加减速度和时间使驱动器和电机在额定的运行频率下正常工作;在出现机床磨损后产生拖板、丝杆鹤轴承过紧卡死,则必须重新调整修复;刀架换刀后太松则检查刀架反转时间是否满足,检查刀架内部的涡轮蜗杆是否磨损,间隙是否太大,安装是否过松等;如果是程序原因造成的,则必须修改程序,按照工件图纸要求改进,选择合理的加工工艺,按照说明书的指令要求编写正确的程序;若发现尺寸偏差太大则检查系统参数是否设置合理,特别是电子齿轮和步距角等参数是否被破坏,出现此现象可通过打百分表来测量。 5、加工圆弧效果不理想,尺寸不到位 故障原因 振动频率的重叠导致共振; 参数设置不合理,进给速度过大,使圆弧加工失步; 丝杆间隙大引起的松动或丝杆过紧引起的失步,同步带磨损。 解决方案: 找出产生共振的部件,改变其频率,避免共振;考虑工件材料的加工工艺,合理编制程序;对于步进电机,加工速率F不可设置过大;机床是否安装牢固,放置平稳,拖板是否磨损后过紧,间隙增大或刀架松动等;更换同步带。 6、批量生产中,偶尔出现工件超差 故障原因 必须认真检查工装夹具,且考虑到操作者的操作方法,及装夹的可靠性,由于装夹引起的尺寸变化,必须改善工装使工人尽量避免人为疏忽作出误判现象; 数控系统可能受到外界电源的波动或受到干扰后自动产生干扰脉冲,传给驱动致使驱动接受多余的脉冲驱动电机夺走或少走现象。 解决方案: 了解掌握其规律,尽量采用一些抗干扰的措施,如:强电场干扰的强电电缆与弱电信号的信号线隔离,加入抗干扰的吸收电容和采用屏蔽线隔离,另外,检查地线是否连接牢固,接地触点最近,采取一切抗干扰措施避免系统受干扰。 7、工件某一道工序加工有变化,其它各道工序尺寸准确 故障原因 该程序段程序的参数是否合理,是否在预定的轨迹内,编程格式是否符合说明书要求。 解决方案: 螺纹程序段时出现乱牙,螺距不对,则马上联想到加工螺纹的外围配置(编码器)和该功能的客观因素。 8、工件的每道工序都有递增或递减的现象 故障原因 程序编写错误; 系统参数设置不合理; 配置设置不当; 机械传动部件有规律周期性的变化故障。 解决方案: 检查程序使用的指令是否按说明书规定的要求轨迹执行,可以通过打百分表来判断,把百分表定位在程序的起点让程序结束后拖板是否回到起点位置,再重复执行即便观察其结果,掌握其规律;检查系统参数是否设置合理或被认为改动;有关的机床配置在连接计算耦合参数上单计算是否符合要求,脉冲当量是否准确;检查机床传动部分有没有损坏,齿轮耦合是否均匀,检查是否存在周期性,规律性故障现象,若有则检查其关键部分并给予排除。
28
2022-04
数控车床上螺纹加工的三大问题和解决方法
  在螺纹车削过程中,经常会因螺纹刀具磨损,崩刀而需重新装刀对刀,装刀对刀的好坏直接影响车削螺纹的精度,特别是螺纹的修复车削,需二次装夹二次对刀,制约了数控车床加工螺纹的加工效率,螺纹精度要求较高时,如梯形螺纹还需两侧面进行精加工,需先粗加工后换精车刀进行精加工,如果不能很好地解决加工过程中的装刀对刀问题,数控车削螺纹将不能得到很好的应用。   螺纹在数控车床中加工的原理   数控车削螺纹与普通车床车螺纹有着很大的区别,普通车床是通过齿轮机械传递与丝杠联动后车削,即主轴每转一转,刀架移动一个螺纹的导程,在整个螺纹加工过程中这条传动链不能断开,否则会乱扣。而数控车削是通过主轴上安装的编码器发出脉冲信号进入数控系统,有数控系统进行运算控制,发出指令控制伺服电机通过滚珠丝杠控制刀具进行移动,实现螺纹的车削,为了让螺纹车削在多走刀时不乱扣,通过检测脉冲信号来控制螺纹的起始加工位置,当程序加工开始时,主轴旋转,刀具等待主轴编码器发出同步信号(零位信号)后,进行车削运动,那么车削第二刀螺纹时,刀具回到上次车削的起始点位置,还是等待接收到同步信号(零位信号)后再次车削,这样车削螺纹始终在同一螺旋线上,所以不会产生乱扣现象。   螺纹车削装刀对刀中存在的问题   (1)首次车削装夹刀具 在首次装夹螺纹刀时会产生螺纹刀刀尖与工件回转中心不等高现象,一般常见于焊接刀,由于制造粗糙,刀杆尺寸不精确,中心高需加垫片进行调整,中心高低影响刀具车削后的实际几何角度。装刀时刀尖角装偏,易产生螺纹牙型角误差,产生齿形歪斜。螺纹刀伸出过长,加工时会产生震刀,影响螺纹表面粗糙度。   (2)粗精车刀对刀 在加工高精度螺纹及梯形螺纹过程中,需用两把螺纹刀粗精车分开,两把刀对刀产生偏移大(特别是Z向)会使螺纹中径变大产生报废。   (3)修复工件对刀 修复工件对刀由于二次装夹工件,修复的螺旋线与编码器一转信号发生了变化,再次修复加工时会产生乱扣。   解决问题的方法   (1)螺纹刀刀尖必须与工件回转中心保持等高,刀具刃磨后用对刀样板靠在工件轴线上进行对刀,保持刀尖角安装正确。如使用数控机夹刀具,由于刀杆制造精度高,一般只要把刀杆靠紧刀架的侧边即可。   (2)粗精加工螺纹刀对刀采用设定某一点为基准点,采用通常方法对刀即可,在实际的对刀过程中采用试切法只要稍加调整一下刀补。   (3)在螺纹加工中,如出现刀具磨损或者崩刀的现象,需重新刃磨刀具后对刀,工件未取下修复,只需把螺纹刀安装的位置与拆下前位置重合在一起,这等同于同一把车刀加工。   (4)如修复已拆下的工件,这时确定加工起点位置才能进行修复加工工作,如何确定加工起点与一转信号位置,首先可用试验棒进行表面深为0.05~0.1mm的螺纹车削(所有参数与需加工螺纹参数相同),Z值为距螺纹起点右端面整数螺纹导程距离值,表面刻出螺旋线,确定螺纹车削起点,并在卡盘圆表面相应位置刻线标记(即使刻线和试验棒上螺旋起点同一轴向剖面内)。目的是使信号位置被记录下来,卸下试验棒,装夹上要车削或修复的螺纹工件,对刀时先将刀具转到加工位置,再将车刀移至卡盘刻线部位,转动卡盘,使刻线对准车刀主切削刃,然后主轴不转动,移动刀尖至任意一个完整螺纹槽内,记下对应Z向绝对坐标,最后计算车刀Z向定位起点坐标,根据计算结果修改程序中起点Z向坐标。公式为z′=z+(n+2)t,n为当前刀具所在螺纹槽到螺纹起点的螺纹槽的个数,t为螺距。   例:设当前z值为-10,n为2,t为3,则 z′=z+(n+2)t=2 新加工起点Z向为2。   车削螺纹过程中装刀和对刀至关重要,特别是二次车削(修复)螺纹,要在已有螺纹沟槽基础上进行螺纹车削,其关键就是要实现加工时保证主轴零位信号位置与工件上已有螺纹螺旋线的起点相一致。
27
2022-04
数控机床CNC装置的工作过程
     CNC数控装置在硬件支持下,由软件完成其控制过程。下面从输入、译码处理、数据处理、插补运算、位置控制、输入/输出处理、显示和诊断八个环节来说明CNC装置的工作过程。 1输入    输入到CNC装置的有零件程序、控制参数和补偿数据等。常用的输入方式有键盘手动输入(MDI)、存储卡输入、磁盘输入、串行通信接口RS-232输入、连接上一级计算机的DNC输入以及网络通信方式输入。 2译码处理    译码处理程序将零件加工程序以程序段(Block)为单位进行处理。每个程序段由若干代码组成。计算机通过译码程序识别这些代码,按一定的规则翻译成CNC装置能够识别的数据形式(如事先约定的二进制形式)并存放在制定的存储器(译码结果缓冲器)内。 3数据处理    数据处理程序的任务就是将经过预处理后存放在制定的存储区的数据进行处理。数据处理一般包括刀具位置补偿、刀具长度补偿、刀具半径补偿、刀尖圆弧半径补偿、进给速度处理及辅助功能处理。 4插补运算    插补运算和位置控制是CNC系统的实时控制,一般在相应的中断服务程序中进行。 5位置控制    位置控制的任务是在每个采样周期内,将插补计算得到的理论位置与工作台实际反馈位置相比较,根据其差值控制进给电动机,带动工作台或刀具移动,加工出所要求的零件。 6输入/输出处理    输入/输出处理主要处理CNC装置操作面板的开关信号、机床电气信号的输入/输出控制(如换刀、换挡、冷却等)。CNC装置与机床强电之间必须通过光电隔离电路进行隔离,确保CNC装置不受强电信号的影响。 7显示    CNC装置的显示主要是为操作者提供方便。显示内容包括零件程序显示、参数显示、机床状态显示、加工轨迹的动态显示、报警诊断显示等。 8诊断    CNC装置利用内部自诊断程序进行故障诊断,主要包括启动诊断和在线诊断。 
26
2022-04
数控车床上怎么加工蜗杆?
  在蜗轮的传动中,蜗杆是主要的动件,现阶段的矿山机械和工程机械中蜗杆的应用非常广泛。数控车床应用到实际生产中后,蜗杆的生产效率不仅得到了提高,而且加工的精度也得到了保障。在数控车床上加工蜗杆存在一定的难度,需要对加工的深度以及切削刀的程度进行准确的掌握,避免在加工过程中可能出现的扎刀现象。   加工蜗杆工艺的分析   设计工艺的内容   主要加工内容为右旋轴向直廊蜗杆,在对工件进行编程的过程中不需要设置退尾量。蜗杆的右侧是起刀点的位置,在加工蜗杆过程中,编程的起点一般设置在工件右端面。工件材料一般选择为45钢;刀具材料一般选择为高速钢或硬质合金;设置蜗杆的全齿为6.6mm,利用G92命令实现左右切削法,以应对背吃刀量较大的情况,从而使加工的可靠性得到保证;在装夹工件的过程中,一般优先选择一夹一顶或者双顶夹尖的方式进行装夹;对于齿根圆直径的误差需要控制在0.2mm以内,而Z轴换刀的误差需要控制在左右赶刀量内,具体为0.1mm,必须满足工件的公差要求。   在设计工艺时,主程序需要从起刀点位置进行,另外加工蜗杆的过程中还需要其他子程序的调用,整个过程的完整性才能得到保证。一般在粗车完成之后再进行精车,车床转速选为10RPM,加工过程中需要对轴向齿厚精度和齿侧表面粗糙度进行确定。左右切削法粗车完成之后,可以在两边齿侧距离刀刃之间看到赶刀刃的间隙。精车起刀点的确定,可以根据对刀的误差进行一定程度的调整,避免空走刀现象的出现。在精加工主程序定位之后,严格按照相关图样的要求,对蜗杆的左侧面进行加工。如果主程序需要进行二次定位,要保证蜗杆齿厚度和右侧面粗糙度的要求。另外,添加切削液可在一定程度上提高切削加工效率,改善齿面加工质量。   相关参数的计算   变换转速时螺距误差需要进行测量,结合工件表面的划痕进行测量,通常情况需要把测量的误差控制在0.05mm的范围内;起刀点同样需要进行计算,主要根据升速段和减速段的距离、转程、导程进行计算。一般情况下,升速段和减速段最小值的计算公式为:L1=Nl/400;L2=Nl/1800。在计算过程中,转速的改变会引起升速段和减速段值的改变。起刀点的X值由齿顶圆直径加上全齿高的两倍再加上退刀量所得。除此之外,还需要对粗车起刀点和精车起刀点的具体位置进行确定。   轴向直廊蜗杆部分的几何尺寸及加工中的参数说明,对齿顶圆直径、倒角等指标进行了设定,满足了蜗杆的加工条件。   使用正确的加工方法   直进法,利用直进法加工蜗杆属于三刃切削,这种方法比较简单,不需要复杂的程序语言,但是其缺点是在加工过程中容易产生扎刀的现象,需要特别注意这方面的问题。   斜进法,利用斜进法加工蜗杆属于两刃切削,其切削抗力可以通过减少切削面积来降低。这种方法与直进法不同,发生扎刀的可能性不高,更加适应于蜗杆的粗车。G76指令功能是将直进法和斜进法相结合,如果蜗杆的模数较大,经常出现的情况是,在最后一刀直进切削后会产生扎刀的现象。   左右切削法,利用左右切削法加工蜗杆属于单刃切削,其背向力并不高,在加工过程中能对扎刀现象进行有效的控制,能完成蜗杆粗车和精车的制作,但是其缺点是整个加工过程比较复杂,并且工作效率不高。   单刃调头切削法,利用单刃调头切削法进行加工,需要采用双顶尖装夹工件,为了避免扎刀现象的出现,主要利用一个受力,保证刀的切削刃单向切削,这样也能保证蜗杆所加工出来的齿侧表面质量较高,满足了蜗杆进行精加工的条件。需要特别注意二次装夹后的对刀问题,在加工过程中二次装夹的实现,需要根据一转信号起始位置确定,可以通过在卡盘上进行划线定位,并对起刀点的位置进行修改。   合理控制扎刀现象的产生   扎刀现象一般产生在吃刀量不变化的状况下,由于刀具的背吃刀量在切削的过程中增大,所以工件的表面有刀具的扎入。另外积屑瘤的产生和工艺系统的刚性都在一定程度上影响着扎刀现象的出现。以下主要阐述控制扎刀现象的方法:   1、在选择加工方法的时候需要结合机床的刚性情况,可以对切削面积进行降低,从而降低背向力对扎刀现象发生的概率。另外积屑瘤也容易导致扎刀现象的产生,因此可以对积屑瘤的产生进行控制。   2、需要准确选择刀具的几何角度,如果是粗车刀,采用正值径向前角进行操作;如果是精车刀,需要采用的前角一般较大。在对蜗杆进行精加工时,采用的车刀是零度的径向前角,一旦选择了正值径向前角,会造成牙型误差,另外在精车换刀时候也容易产生对刀的误差,因此需要严格控制径向前角的大小,保证误差在可接受的范围内。   3、在使用粗车的过程中,可以利用转位弹簧刀杆,这对扎刀出现的情况能进行降低,可以推广使用。   4、实际加工过程中乳化液、矿物油在润滑效果方面表现不明显,我们需要对切削液进行合理的选择。在粗车使用时,利用白铅油或者红铅粉和全系统换耗用油的混合剂进行配制,进行冷却润滑。精车利用全系统换耗用油和煤油进行混合配制,能起到提高工件加工表面质量的作用。   5、在切削过程中如果受到螺旋升角的影响,一侧切削刀受力弯曲,刀刃会逐渐向远离工件的方向移动,这时候容易产生让刀的现象。因此,可以选择让刀一侧的刀刃进行蜗杆的加工,能在一定程度上避免扎刀现象的产生。除此之外还需要注意,如果在加工蜗杆的过程中由于让刀而产生径向振纹,其原因可能是切削刃的工作前角较小。   变换转速对切削螺纹螺距误差的影响   一般数控车床在对螺纹进行加工的过程中,如果转速存在变换,螺纹螺旋线会在轴向产生一定的偏动现象,从而就会形成螺距的误差。如果转速的变化在两级转速范围内,则螺距误差是一常数,该数值可以在加工过程中测量得到。为了避免乱扣现象,需要通常对起刀点的位置进行修改[3]。   刀具粗精车的换刀问题   工件一次安装需要在数控车床上注意车刀的更换问题,要保证两把车刀在同一位置上,并在X轴和Z轴上的坐标是相同的。加工时可以使用简单的对刀方法,当外圆获得X轴相对坐标之后,需要进行对刀处理,要保证该工件倒角的X值是相同的,还需要对第二把刀输入第一把刀Z值的坐标,进行一定程度的补偿。这种对刀的方法并不存在试切削程序,但是要保证对刀的误差在0.05毫米的范围内。   结语:综上所述,利用数控车床上加工蜗杆在很多方面都体现了优势,不仅不需要工人具有过多的操作技能,能在数控车床上进行车削大导程蜗杆和螺纹,还能保证数控车床的精准度,从而彻底改变了传统蜗杆车刀的习惯,合理控制了刀尖角,对切削力进行了一定程度的减小,提高了蜗杆的质量和生产效率。
25
2022-04
影响数控机床加工精度的3大因素及2大对策
  数控机床在进行加工过程中难免会受到各种各样因素的影响,使得其加工精度产生一定的偏差,给生产生活带来一些不便。怎样提高数控机床加工精度是金粉们很关心的事情。 1.数控机床加工中的精度问题   1.1数控机床加工中的位置误差对加工精度的影响   位置误差是指加工后零件的实际表面、轴线或对称平面之间的相互位置相对于其理想位置的变动量或偏离程度,如垂直度、位置度、对称度等。数控机床加工中的位置误差通常指死区误差,产生位置误差的原因主要在机床零件加工时由于传动时产生的间隙和弹性变形导致加工误差,以及在加工中,机床的刀头需要克服摩擦力等因素导致产生位置误差。在开环系统中位置精度受到的影响是很大的,而在闭环随动系统中,则主要取决于位移检测装置的精度和系统的速度放大系数,一般影响较小。   1.2数控机床加工中由于几何误差导致的加工精度误差   数控机床加工中,由于刀具和夹具在受外力和加工中产生的热量等外界因素的影响下,机床的几何精度受到影响,机床上加工的零部件产生几何变形,从而导致产生几何误差。据研究,数控机床产生几何误差的主要原因无外乎以下两种:内部因素和外部因素。机床产生几何误差的内部因素指机床本身的因素导致的几何误差,如机床的工作台面的水平度、机床导轨的水平程度和直线度、机床刀具和夹具的几何准确程度等。外部因素主要是指在外部环境和加工过程中的热变形等因素影响下产生的几何误差,如刀具或零部件在切削过程中,由于受热膨胀、变形,从而产生几何误差,影响了机床的加工精度和零部件的加工精度。   1.3数控机床加工中由于机床定位导致的加工精度误差   通过长期的零部件加工的数据分析和实践操作看出,机床定位对于数控机床的加工精度有较大影响。数控机床的加工误差,从结构上看,多由定位精度引起,其中机床的进给系统是影响定位精度的主要环节。数控机床的进给系统通常由机械传动系统和电气控制系统两部分组成,定位精度与结构设计中的机械传动系统有关。在闭环系统中,数控机床通常可以通过定位检测装置防止进给系统中的主要部件产生位置偏差,如滚珠丝杠等部件。而对于开环系统,由于影响因素较多、情况比较复杂,无法进行定位监控,所以对数控机床的加工精度影响较大。   2.提高数控机床加工精度的对策   在数控机床的加工过程中,其所加工的零部件的精度直接影响产品的质量,部分机械零部件和精密设备的零部件对加工精度的要求非常高,提高数控机床的加工精度是解决问题的关键所在。通过广泛的研究与分析得出,提高数控机床的加工精度的对策大致有以下几种方法:   2.1通过控制数控机床的原始误差提高加工精度   数控机床加工过程中,误差本身是不可避免的,被加工零件与数控机床之间存在必然的误差,这种一定存在的误差称为原始误差。   因此,要提高数控机床的加工精度,控制数控机床的原始误差是重要对策之一。针对产生原始误差的可能性要进行系统的分析,根据误差产生的原因和误差类型要制定相应的改进措施。机械零件在加工过程中,数控机床的位置精度、几何精度对零部件的加工精度有重要影响,要通过位置控制和几何精度控制来减少位置误差和几何误差对零件的影响。同时对于加工过程中产生的变形误差,要用风冷、水冷等方法控制加工过程中的热变形,减少热变形误差带来的加工精度影响。同时对于位置误差,要合理选择适合零件材质的刀具,避免刀具变形,同时根据被加工零件的胚料形状选择合理的夹具,有必要的情况下要针对零部件的形状尺寸专门设计夹具,避免产生位置误差。   2.2合理设计机床核心部件避免定位误差   机床的定位精度对零部件的精度有重要影响,影响机床定位精度的核心部件如进给系统、导轨、工作台面等的直线度、水平度等。在设计数控机床时,要合理选择核心部件,例如在选择目前在机床中广泛使用的滚珠丝杠时,应当充分考虑滚珠丝杠的精度,应当选取和安装比较成熟的滚珠丝杠技术。滚珠丝杠的支撑同样不可忽视,滚珠丝杠的支撑与系统的传动精度密切相关,滚珠丝杠的支撑主要由轴向载荷和回转速度决定,对数控车床的加工精度有重要影响,通常选用高精度的固定和支撑方式。并且设计过程中应严格对滚珠丝杠的承载能力要进行相关校核。 而拖链,作为机床外防护的一部分,现在对机床来说已经不可或缺。由于其链节结构,在跟随刀架运动时,也会产生一定的振动,这种振动,会直接传递到刀具上,最终会对加工精度造成一定的影响。   因此,拖链的性能,大大决定了机床精度。易格斯的E6系列拖链,经过特殊设计,可以极大地降低振动和噪音,把拖链运动给机床精度带来的影响降低到最低。   另外,易格斯E6系列拖链采用了小节距,无孔销连接方式的聚合弹簧,零磨损,适合高速及高加速度场合应用。速度V=1.8m/s的情况下,噪音只有37Db(A),亦可应用于无尘室等行业。   2.3通过实时监控技术提高数控机床的加工精度   随着数控技术的不断提高,对数控机床进行加工过程全程实时监控,及时调整加工过程中的误差环节,并对加工过程中的每一个环节的误差数据进行采集,并反馈至控制终端,并通过误差数据采取相应的误差补偿机制,进行及时的误差补偿,能够有效提高零件的加工精度。
23
2022-04
数控机床的自动换刀装置,你认识几种?
  数控机床为了能在工件一次装夹中完成多道加工工序,缩短辅助时间,减少多次安装工件所引起的误差,必须带有自动换刀装置。自动换刀装置应当满足换刀时间短、刀具重复定位精度高、刀具储存量足够、刀库占地面积小以及安全可靠等基本要求。   一、自动换刀装置的形式 1.回转刀架换刀 回转刀架是一种最简单的自动换刀装置,常用于数控车床。可以设计成四方刀架、六角刀架或圆盘式轴向装刀刀架等多种形式。回转刀架上分别安装着四把、六把或更多的刀具,并按数控装置的指令换刀。 回转刀架在结构上必须具有良好的强度和刚度,以承受粗加工时的切削抗力。由于车削加工精度在很大程度上取决于刀尖位置,对于数控车床来说,加工过程中刀具位置不进行人工调整,因此更有必要选择可靠的定位方案和合理的定位结构,以保证回转刀架在每次转位之后,具有尽可能高的重复定位精度(一般为0.001~0.005mm)。 一般情况下,回转刀架的换刀动作包括刀架抬起、刀架转位及刀架压紧等。 2.更换主轴头换刀(刀具旋转为主运动) 更换主轴换刀是带有旋转刀具的数控机床的一种比较简单的换刀方式。这种主轴头实际上就 是一个转塔刀库。 主轴头有卧式和立式两种,通常用转塔的转位来更换主轴头,以实现自动换刀。在转塔的各个主轴上,预先安装有各工序所需要的旋转刀具,当发出换刀指令时,各主轴头依次地转到加工位置,并接通主运动,使相应的主轴带动刀具旋转。而其它处于不加工位置上的主轴都与主运动脱开。 这种更换主轴换刀装置,省去了自动松、夹、卸刀、装刀以及刀具搬运等一系列的复杂操作,从而缩短了换刀时间,并提高了换刀的可靠性。但是由于空间位置的限制,使主轴部件结构尺寸不能太大,因而影响了主轴系统的刚性。为了保证主轴的刚性,必须限制主轴的数目,否则会使结构尺寸增大。因此,转塔主轴头通常只适用于工序较少、精度要求不太高的机床,例如数控钻、铣床等。 3.带刀库的自动换刀系统 由于回转刀架、转塔头式换刀装置容纳的刀具数量不能太多,不能满足复杂零件的加工需要,因此,自动换刀数控机床多采用带刀库的自动换刀装置。带刀库的自动换刀装置由刀库和换刀机构组成,换刀过程较为复杂。首先要把加工过程中使用的全部刀具分别安装在标准刀柄上,在机外进行尺寸预调整后,按一定的方式放入刀库。换刀时,先在刀库中选刀,再由换刀装置从刀库或主轴上取出刀具,进行交换,将新刀装入主轴,旧刀放回刀库。刀库具有较大的容量,既可安装在主轴箱的侧面或上方。由于带刀库的自动换刀装置的数控机床的主轴箱内只有一根主轴,主轴部件的刚度要高,以满足精密加工要求。 另外,刀库内刀具数量较大,因而能够进行复杂零件的多工序加工,大大提高了机床的适应性和加工效率。带刀库的自动换刀系统适用于数控钻削中心和加工中心。   二、刀库和刀具的选择方式 1.刀库类型 刀库的作用是储备一定数量的刀具,通过机械手实现与主轴上刀具的互换。刀库的类型有盘式刀库、链式刀库等多种形式,刀库的形式和容量要根据机床的工艺范围来确定。图7-16所示的盘式刀库,刀具的方向与主轴同向,换刀时主轴箱上升到一定的位置,使主轴上的刀具正好对准刀库最下面的那个位置,刀具被夹住,主轴在CNC的控制下,松开刀柄,盘式刀库向前运动,拔出主轴上的刀具,然后刀库将下一个工序所用的刀具旋转至与主轴对准的位置,刀库后退将新刀具插入主轴孔中,主轴夹紧刀柄,主轴箱下降到工作位置,完成换刀任务,进行下道工序的加工。此换刀装置的优点是结构简单,成本较低,换刀可靠性较好;缺点是换刀时间长,适用于刀库容量较小的加工中心。 对于刀库容量需要较大的加工中心可采用链式刀库(图7-17),链式刀库的结构紧凑,刀库容量较大,链环的形状可根据机床的布局制成各种形状,也可将换刀位突出以便于换刀。当需要增加刀具数量时,只需增加链条的长度即可,给刀库设计与制造带来了方便。 2.刀具的选择方式 一般的刀库内存放有多把刀具,每次换刀前要进行选刀,常用的选刀方法有顺序选刀和任意选刀两种,顺序选刀是在加工之前,将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,加工是按顺序调刀,加工不同的工件时必须重新调整刀库中的刀具顺序。其优点是刀库的驱动和控制都比较简单。因此,这种方式适合加工批量较大、工件品种数量较少的中、小型数控机床的自动换刀。 随着数控系统的发展,目前大多数的数控系统都采用任意选刀的方式,其分为刀套编码、刀具编码和记忆式等三种。 3.刀具编码方式 刀具编码或刀套编码需要在刀具或刀套上安装用于识别的编码条,一般都是根据二进制编码的原理进行编码。刀具编码选刀方式采用了一种特殊的刀柄结构,并对每把刀具编码。每把刀具都具有自己的代码,因而刀具可在不同的工序中多次重复使用,换下的刀具不用放回原刀座,刀库的容量也可相应减少。但每把刀具上都带有专用的编码环,刀具长度加长,制造困难,刀库和机械手的结构变复杂。刀套编码的方式是一把刀具只对应一个刀套,从一个刀套中取出的刀具必须放回同一刀套中,取送刀具十分麻烦,换刀时间长。目前在加工中心上大量使用记忆式的方式。这种方式能将刀具号和刀库中的刀套位置对应地记忆在数控系统的PLC中,无论刀具放在哪个刀套内,刀具信息都始终记存在PLC内。刀库上装有位置检测装置,可获得每个刀套的位置信息。这样刀具就可以任意取出并送回。刀库上还设有机械原点,使每次选刀时就近选取。   三、刀具交换装置 数控机床的自动换刀装置中,实现刀库与机床主轴之间传递和装卸刀具的装置称为刀具交换装置。刀具的交换方式有两种:由刀库与机床主轴的相对运动实现刀具交换以及采用机械手交换刀具。利用刀库与机床主轴的相对运动实现刀具交换的装置在换刀时必须首先将用过的刀具送回刀库,然后再从刀库中取出新刀具,两个动作不能同时进行,换刀时间较长。而采用机械手换刀装置在换刀时能够同时抓取和装卸机床主轴和刀库中的刀具,因此换刀时间进一步缩短。采用机械手进行刀具交换的方式应用最广泛。这是因为机械手换刀灵活,动作快,而且结构简单。机械手能够完成抓刀—拔刀—回转—插刀—返回等一系列动作。为了防止刀具掉落,机械手的活动爪都带有自锁机构。
22
2022-04
​CNC数控机床加工铝料,需注意的问题!
  首先,在铝料的前提下,需要考虑的有以下几个方面   一、 不可抗拒因素:  1.机床本身的稳定度。 如果不是新机床或者机床进过大量的加工没有进行调试的情况下,会出现机床本身所造成的尺寸误差。 造成机床本身误差有以下几个因素:  (1)机械方面: a.伺服电机与丝杠之间松动。 b.滚珠丝杠轴承或螺母磨损。 c.丝杠与螺母之间润滑不足。 (2)电气方面: a.伺服电机故障。 b.光栅尺内部有污垢。 c.伺服放大器故障。 系统参数方面可进行PMC恢复,所以略去不提。  2.工件加工后冷却变形。 这个基本上无法避免,在加工时尽量注意冷却液的使用,以及在进行在位测量时,注意冷却后的工件变形。   二、可避免因素:  1.加工工艺: 其实大部分的实际加工误差都是由加工工艺不合理导致,在保证基本加工工艺(如铣削数控加工的“先粗后精、先面后孔、先大面后小面”或者夹具使用中“减少装夹次数,尽量采用组合夹具”等基本加工工艺细节)的基础上,尽量减少铁屑对铝件造成的加工误差,因为铝件很软,排除的铁屑很容易使铝件造成加工误差比如,在FANUC或华中加工中心中,打深孔尽量使用G83指令,使铁屑可以排出。  2.切削三要素:  切削速度vc、进给量f、切削深度ap与刀具补偿这方面实在是不好细说,用简单的话来说,就是在保证加工质量和刀具磨损的前提下,调整参数充分发挥刀具切削性能,使切削效率最高,加工成本最低。在数控车床中,还有刀头磨损补偿等要素。  3.手工编程和自动编程中的数值计算: 在手工编程中,计算出现误差也是常见状况,不过现在大部分生产都是自动编程,所以,这部分只是提个醒,凑个字数而已。  4.准确对刀: 对刀不准确也是造成尺寸误差的因素,所以,尽量选择好的寻边器,如果机床有自动对刀器那就更好了,如果没有寻边器,试切吧,这就是操作经验了。以上是总结的数控加工中容易使精度误差的几项因素。希望小伙伴们受益哦~ 
21
2022-04
影响数控机床加工精度的3大因素及2大对策
 数控机床在进行加工过程中难免会受到各种各样因素的影响,使得其加工精度产生一定的偏差,给生产生活带来一些不便。怎样提高数控机床加工精度是金粉们很关心的事情。 1.数控机床加工中的精度问题   1.1数控机床加工中的位置误差对加工精度的影响   位置误差是指加工后零件的实际表面、轴线或对称平面之间的相互位置相对于其理想位置的变动量或偏离程度,如垂直度、位置度、对称度等。数控机床加工中的位置误差通常指死区误差,产生位置误差的原因主要在机床零件加工时由于传动时产生的间隙和弹性变形导致加工误差,以及在加工中,机床的刀头需要克服摩擦力等因素导致产生位置误差。在开环系统中位置精度受到的影响是很大的,而在闭环随动系统中,则主要取决于位移检测装置的精度和系统的速度放大系数,一般影响较小。   1.2数控机床加工中由于几何误差导致的加工精度误差   数控机床加工中,由于刀具和夹具在受外力和加工中产生的热量等外界因素的影响下,机床的几何精度受到影响,机床上加工的零部件产生几何变形,从而导致产生几何误差。据研究,数控机床产生几何误差的主要原因无外乎以下两种:内部因素和外部因素。机床产生几何误差的内部因素指机床本身的因素导致的几何误差,如机床的工作台面的水平度、机床导轨的水平程度和直线度、机床刀具和夹具的几何准确程度等。外部因素主要是指在外部环境和加工过程中的热变形等因素影响下产生的几何误差,如刀具或零部件在切削过程中,由于受热膨胀、变形,从而产生几何误差,影响了机床的加工精度和零部件的加工精度。   1.3数控机床加工中由于机床定位导致的加工精度误差   通过长期的零部件加工的数据分析和实践操作看出,机床定位对于数控机床的加工精度有较大影响。数控机床的加工误差,从结构上看,多由定位精度引起,其中机床的进给系统是影响定位精度的主要环节。数控机床的进给系统通常由机械传动系统和电气控制系统两部分组成,定位精度与结构设计中的机械传动系统有关。在闭环系统中,数控机床通常可以通过定位检测装置防止进给系统中的主要部件产生位置偏差,如滚珠丝杠等部件。而对于开环系统,由于影响因素较多、情况比较复杂,无法进行定位监控,所以对数控机床的加工精度影响较大。   2.提高数控机床加工精度的对策   在数控机床的加工过程中,其所加工的零部件的精度直接影响产品的质量,部分机械零部件和精密设备的零部件对加工精度的要求非常高,提高数控机床的加工精度是解决问题的关键所在。通过广泛的研究与分析得出,提高数控机床的加工精度的对策大致有以下几种方法:   2.1通过控制数控机床的原始误差提高加工精度   数控机床加工过程中,误差本身是不可避免的,被加工零件与数控机床之间存在必然的误差,这种一定存在的误差称为原始误差。   因此,要提高数控机床的加工精度,控制数控机床的原始误差是重要对策之一。针对产生原始误差的可能性要进行系统的分析,根据误差产生的原因和误差类型要制定相应的改进措施。机械零件在加工过程中,数控机床的位置精度、几何精度对零部件的加工精度有重要影响,要通过位置控制和几何精度控制来减少位置误差和几何误差对零件的影响。同时对于加工过程中产生的变形误差,要用风冷、水冷等方法控制加工过程中的热变形,减少热变形误差带来的加工精度影响。同时对于位置误差,要合理选择适合零件材质的刀具,避免刀具变形,同时根据被加工零件的胚料形状选择合理的夹具,有必要的情况下要针对零部件的形状尺寸专门设计夹具,避免产生位置误差。   2.2合理设计机床核心部件避免定位误差   机床的定位精度对零部件的精度有重要影响,影响机床定位精度的核心部件如进给系统、导轨、工作台面等的直线度、水平度等。在设计数控机床时,要合理选择核心部件,例如在选择目前在机床中广泛使用的滚珠丝杠时,应当充分考虑滚珠丝杠的精度,应当选取和安装比较成熟的滚珠丝杠技术。滚珠丝杠的支撑同样不可忽视,滚珠丝杠的支撑与系统的传动精度密切相关,滚珠丝杠的支撑主要由轴向载荷和回转速度决定,对数控车床的加工精度有重要影响,通常选用高精度的固定和支撑方式。并且设计过程中应严格对滚珠丝杠的承载能力要进行相关校核。 而拖链,作为机床外防护的一部分,现在对机床来说已经不可或缺。由于其链节结构,在跟随刀架运动时,也会产生一定的振动,这种振动,会直接传递到刀具上,最终会对加工精度造成一定的影响。   因此,拖链的性能,大大决定了机床精度。易格斯的E6系列拖链,经过特殊设计,可以极大地降低振动和噪音,把拖链运动给机床精度带来的影响降低到最低。   另外,易格斯E6系列拖链采用了小节距,无孔销连接方式的聚合弹簧,零磨损,适合高速及高加速度场合应用。速度V=1.8m/s的情况下,噪音只有37Db(A),亦可应用于无尘室等行业。   2.3通过实时监控技术提高数控机床的加工精度   随着数控技术的不断提高,对数控机床进行加工过程全程实时监控,及时调整加工过程中的误差环节,并对加工过程中的每一个环节的误差数据进行采集,并反馈至控制终端,并通过误差数据采取相应的误差补偿机制,进行及时的误差补偿,能够有效提高零件的加工精度。
东莞市沃尔鑫五金机械有限公司 Copyright © 2021 版权所有 技术支持:东莞网站建设